Predicting Discourse Connectives for Implicit Discourse Relation Recognition
نویسندگان
چکیده
Existing works indicate that the absence of explicit discourse connectives makes it difficult to recognize implicit discourse relations. In this paper we attempt to overcome this difficulty for implicit relation recognition by automatically inserting discourse connectives between arguments with the use of a language model. Then we propose two algorithms to use these predicted connectives. One is to use these predicted implicit connectives as additional features in a supervised model. The other is to perform implicit relation recognition based only on these predicted connectives. Results on Penn Discourse Treebank 2.0 show that predicted discourse connectives help implicit relation recognition and the first algorithm can achieve an absolute average f-score improvement of 3% over a state of the art baseline system.
منابع مشابه
The Effects of Discourse Connectives Prediction on Implicit Discourse Relation Recognition
Implicit discourse relation recognition is difficult due to the absence of explicit discourse connectives between arbitrary spans of text. In this paper, we use language models to predict the discourse connectives between the arguments pair. We present two methods to apply the predicted connectives to implicit discourse relation recognition. One is to use the sense frequency of the specific con...
متن کاملLearning Connective-based Word Representations for Implicit Discourse Relation Identification
We introduce a simple semi-supervised approach to improve implicit discourse relation identification. This approach harnesses large amounts of automatically extracted discourse connectives along with their arguments to construct new distributional word representations. Specifically, we represent words in the space of discourse connectives as a way to directly encode their rhetorical function. E...
متن کاملAdversarial Connective-exploiting Networks for Implicit Discourse Relation Classification
Implicit discourse relation classification is of great challenge due to the lack of connectives as strong linguistic cues, which motivates the use of annotated implicit connectives to improve the recognition. We propose a feature imitation framework in which an implicit relation network is driven to learn from another neural network with access to connectives, and thus encouraged to extract sim...
متن کاملLeveraging Synthetic Discourse Data via Multi-task Learning for Implicit Discourse Relation Recognition
To overcome the shortage of labeled data for implicit discourse relation recognition, previous works attempted to automatically generate training data by removing explicit discourse connectives from sentences and then built models on these synthetic implicit examples. However, a previous study (Sporleder and Lascarides, 2008) showed that models trained on these synthetic data do not generalize ...
متن کاملShallow Convolutional Neural Network for Implicit Discourse Relation Recognition
Implicit discourse relation recognition remains a serious challenge due to the absence of discourse connectives. In this paper, we propose a Shallow Convolutional Neural Network (SCNN) for implicit discourse relation recognition, which contains only one hidden layer but is effective in relation recognition. The shallow structure alleviates the overfitting problem, while the convolution and nonl...
متن کامل